作为一位杰出的教职工,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。那么什么样的教案才是好的呢?下面是小编帮大家整理的数学六年级下册圆柱的体积教案,欢迎阅读,希望大家能够喜欢。
数学六年级下册圆柱的体积教案 1教学内容:
九年义务教育六年制例4、例5及做一做,练习八的例5例6及相关的练习题。
二、教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。
3、注意渗透类比、转化思想。
三、教学重点:
理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。
四、教学难点:
推导圆柱的体积计算公式。
五、教法要素:
1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。
2、原型:圆柱模型。
3、探究的问题:
(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?
(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个部分?
(3)怎样计算圆柱的体积?
六、教学过程:
(一)唤起与生成。
1、什么叫物体的体积?我们学过哪些立体图形的体积计算?
2、长方体和正方体的`体积怎样计算?它们可以用一个公式表示出来吗?
切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?
(二)探究与解决。
探究:圆柱的体积
1、提出问题,启发思考:如何计算圆柱的体积?
2、类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。
3、转化物体,分析推理:
怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。
(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。
4、全班交流,公式归纳:
交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。
回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?
5、举一反三,应用规律:
(1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。
如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出V=∏r2h
(2)教学例6
学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。
(三)训练与强化。
1、基本练习。
练习三的“做一做”。
学生独立做在练习本上,做完后集体订正。
3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)
4、教学例6:
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
(2)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
5、比较一下补充例题、例6有哪些相同的地方和不同的地方?
(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。)
三、巩固练习:
1、做的至。
教材分析:
本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。
学生分析:
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
学习目标:
1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。
2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。
3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。
教学过程:
出示教学情境:一个杯子能装多少水呢?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。
(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)
出示练习三,练一练左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)
二、设问导读
请仔细阅读课本的内容,完成下面问题
(一)以小组合作完成1、2题。
1、猜一猜,圆柱的体积可能等于()×()
2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的.长方体(如课本右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系
(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()
[汇报交流,教师用教具演示讲解2题]
(二)独立完成3、4题。
3、如果已知课本左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?
先求底面积,列式计算()
再求体积,列式计算()
综合算式()
4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)
【要求:完成之后以小组互查,有争议之处四人大组讨论。】
教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。
三、自我检测
1、课本9页试一试
2、课本9页练一练1题(只列式,不计算)
【要求:完成后小组互查,教师评价】
四、巩固练习
课本练一练的2、3、4题
【要求:组长先给组员讲解题思路,然后小组内共同完成】
教师进行错例分析。
五、拓展练习
1、课本练一练的5题
2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?
【要求:先组内讨论确定解题思路,再完成】
六、课堂总结,布置作业
1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。
2、作业:课本练一练6题
数学六年级下册圆柱的体积教案 12教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2、复习长方体、正方体的体积公式后,让学生独立完成练习三例6。
(1)学生读题,理解题意。
(2)教师:要知道能否装下这袋奶,首先要计算出什么?
学生:杯子的容积。
(3)指明要计算杯子的容积,学生在练习本上完成。
杯子的底面积:3.14×(8÷2)2=50、24(cm2)
杯子的容积:50、24×10=502、4(mL)
答:因为502、4大于498,所以杯子能装下这袋牛奶。
3、 教学例7。
师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材例7)
生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。
生2:我们可以先转化成圆柱,再计算瓶子的.容积。
师:怎样转化呢?说说你的想法。
学生可能会说:
瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。
也就是把瓶子的容积转化成了两个圆柱的体积。
……
师:尝试自己解答一下。
学生尝试解答;教师巡视了解情况。
组织学生交流汇报:
瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25
=1256(cm3)
=1256(mL)
答:这个瓶子的容积是1256mL。
只要学生解答正确就要给予肯定,不强求算法一致。
【设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】
师:在本节课的学习中,你有哪些收获?
学生可能会说:
利用“转化”可以帮助我们解决问题。
我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。
在五年级时,计算梨的体积也是用了转化的方法。
……
【设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】
圆柱的体积
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
V=
A类
1、填表。
底面积S(平方米) 高h(米) 圆柱的体积V(立方米)
15 3
6.4 4
2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?
(考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)
B类
两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?
(考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)
课堂作业新设计
A类:
1、 45 25.6
2、 314平方米 471立方米
B类:
54立方分米
教材习题
“做一做”
1、 75×90=6750(cm3)
2、 3.14×(1÷2)2×10=7.85(m3)
“做一做”
1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356L 0.75361 不够。
2、 3.14×(0.4÷2)2×5÷0.02≈31(张)
“做一做”
3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6mL
“练习五”
1、 3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340mL
3、 3.14×(3÷2)2×0.5×2=7.065(m3)
4、 80÷16=5(cm)
5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨
6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)
体积:3.14×(6÷2)2×12=339.12(cm3)
表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)
表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)
体积:3.14×(14÷2)2×5=769.3(cm3)
7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)
8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58mL
932、58800 不够
9、 81÷4.5×3=54(dm3)
10、 3.14×(10÷2)2×2=157(cm3)
11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304L 1.13041 能装满。
12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)
13、 30×10×4÷6=200(cm3)=200(mL)
14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)
15、 第四个圆柱的体积最小;第一个圆柱的体积最大。
发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。
数学六年级下册圆柱的体积教案 14教学目标
1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。
2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。
3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。
教学重点、难点
1、圆柱体积计算公式的推导过程并能正确应用。
2、借助教具演示,弄清圆柱与长方体的关系。
教具、学具准备
多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。
教学设想
《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。
教学过程
一、创设情境,激疑引入
“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?
(2)讨论后汇报:
生1:用量筒或量杯直接量出它的体积;
生2:用秤称出水的重量,然后进一步知道体积;
生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?
生1:把水到入长方体容器中……
生2:我们学过了长方体的体积计算,只要量出长、宽、高就行
[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]
2、创设问题情境。
师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?
[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]
师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验,探究新知
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?
生1:圆柱的上下两个底面是圆形
生2:侧面展开是长方形……
生3:说明圆柱和我们学过的圆和长方形有联系
师:请同学们想想圆柱的体积与什么有关?
生1:可能与它的大小有关
生2:不是吧,应该与它的高有关
[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
配合学生回答演示课件。
[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]
2、小组合作,探究新知
(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)
(2)学生以小组为单位操作体验。
把圆柱的底面积分成许多相等的`扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)
[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]
(3)学生小组汇报交流:
近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。
教师根据学生汇报报,用教具进行演示。
(4)概括板书:根据圆柱与近似长方体的关系,推导公式:
长方体的体积 = 底面积 × 高
↓ ↓ ↓
圆柱的体积 = 底面积 × 高
用字母表示计算公式V= sh
设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践
数学六年级下册圆柱的体积教案 15教学目标
1、通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2、通过圆柱体体积公式的推导,培养学生的分析推理能力。
3、理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重难点
圆柱体体积的计算
教学过程
(一)创设情境,激趣引入。
师:同学们,周末老师去超市买饮料,看到同一品牌两种包装的饮料售价都是3.5元,你能帮老师挑选出哪一种饮料含量最多吗?
出示:两种圆柱体饮料。
师:对,它们的粗细、长短都不同,要知道它们的体积才行。
(二)探索尝试,解释交流。
师:怎样求圆柱的体积呢?
师:首先想一想,在学习计算圆的面积时,我们是怎样把圆变成已学过的图形来计算面积的?
(出示:圆面积推导过程)
1、师:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的`立体图形来求体积吗?(学生:把圆柱切开,拼成长方体)
师:你的想法很好,怎样转化呢?
2、师:请小组内想一下,把怎么把圆柱转化为近似的长方体?并研究转化后的长方体和圆柱体积、底面积、高之间的关系?
3、师:哪个小组愿意展示一下你们小组的研究结果?
师:同学们真了不起!你们的发现非常正确。我们来看一看演示。
(演示将圆柱的割拼过程)
师:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。
你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的?
根据学生的回答师板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
师:如果用V表示体积,用S表示圆柱的底面积,用h表示高。你能用字母表示圆柱的体积公式吗?
4、师:刚才我们共同研究出了求圆柱的体积的计算公式,你能根据公式计算两瓶饮料的体积吗?(师给出有关数据,由学生计算。)
(三)课堂练习。
1、计算下面圆柱体积。
2、用数学
(1)一根圆柱形柱子,底面半径是0.4米,高是5米。它的体积是多少?
(2)从水杯里面量,水杯的底面积直径是6厘米,高是16厘米,这个水杯能容多少毫升水?
(3)金箍棒底面周长是12.56厘米,长是200厘米。这根金箍棒的体积是多少立方厘米?如果这根金箍棒是铁制的,每立方厘米铁的质量是7.9g,这根金箍棒的质量是多少千克?
总结
谈谈这节课的收获?
小学六年级下册数学《圆柱的体积》教案优秀推荐度: